NOAA Critical Infrastructure Protection (CIP) System (NOAA CIPS)

FY 2003

Commerce IT Review Board
June 2001

Background: FY 2003 Budget

- CIPS budget requirement \$10.21M in FY03
 - First year funding request reduced by \$10M from FY02 submission
 - Resources for climate research deleted
 - System downsized
 - System sized to meet operational requirements
 - Sustain ability to issue watches and warnings
- Recurring funds at \$10.8M per year required to sustain proposed CIP systems
 - Recurring funding reduced by \$5.7M per year from FY02 submission
 - System downsized

What is being proposed?

- Separate operational backup systems for:
 - Resources sufficient to backup of 100% of the operational products at operational schedules
 - NWS NCEP Central Computer System (CCS)
 - NESDIS Office of Satellite Data Processing and Distribution (OSDPD)
 - Support (maintenance, facility, refresh) and telecommunications included
- Compliance with Presidential Decision Directives
 - 67 : Continuity of Operations and
 - 63 : Critical Infrastructure Protection
- Investigating a consolidated NOAA Critical Infrastructure Protection System (CCS, OSDPD) to ensure uninterrupted flow of essential data and products.
 - Potential cost avoidance if co-located.

What is being proposed?

- Elimination of single points of failure for critical systems:
 - **CCS**: NWS weather and climate forecasting models are run on a single high performance computer system.
 - Primary: 100% operational backup
 - Secondary: When not used for backup, resources can meet research and development goals
 - National Test Bed for meteorological model development
 - Joint Center for Satellite Data Assimilation
 - OSDPD: single facility, utilizing IBM mainframe computers, processes and distributes operational and highly perishable data and products from environmental satellites.

Basis for investment

Current Backups are Inadequate or Non-existent

- CCS backup
 - Uses alternate source products from Navy, Air Force, OAR, UKMet
 - Products from these sources not guaranteed
 - Does not provide 100% operation products at operational schedules
 - Backup product generation is not under NCEP control
 - NWS products are degraded in both accuracy and timeliness when alternate source products are used.
- OSDPD has no backup
 - 87% of all data input to the operational forecast models are derived from satellites and processed by OSDPD

NOAA's CIP

Providing Computational Resources for the NCEP Disaster Recovery

OPERATIONAL (Total nodes needed 256) [100% of operational system]	Minimum Disaster Recovery* (Total nodes needed 256)	CURRENTBACKUP
Medium Range Forecast 1x / 75km / 384 hours	Medium Range Forecast 1x / 75km / 384 hours	Not Available
Eta 4x / 22km / 84 (48) hours (moving to 12km in Nov 2)	Eta 4x / 22km / 84 (48) hours 001)	Air Force MM5 4x / 45km / 60 (48) hours
Aviation (AVN)	Aviation (AVN)	Navy NOGAPS
4x / 75km / 126 (84) hours	4x / 75km / 126 (84) hours	2x / 81km / 120 hours
Rapid Update Cycle (RUC	Rapid Update Cycle (RUC)	Rapid Update Cycle
24x / 40km / 12 hours	24x / 40km / 12 hours	24x / 40km / 12 hours
Nested Grid Model (NGM	Nested Grid Model (NGM)	Not Available
2x / 80km / 48 hours	2x / 80km / 48 hours	(no Model Output Stats - MOS)
Hurricane (4 storms)	Hurricane (4 storms)	Navy Hurricane (2 storms)
4x / 18-110km / 126 (84) h	nrs 4x / 18-110km / 126 (84) hrs	2x / 18-110km / 72 hours
Ensembles	Ensembles	Web access to Canada, ECMWF, etc.
2x / 75km / 120 hours	2x / 75km / 120 hours	(varies)
Wave (NWW3)	Wave (NWW3)	Navy WAM
2x / 110km / 120 hours	2x / 110km /120 hours	2x / 110km / <mark>72 hours</mark>

^{*} Determined through the NWS OCWWS

[times per day / resolution / length of forecast (off-cycle length)]

Impact from loss of NWS operational Hurricane Model Unnecessary Preparedness Costs

Alternate Source: Model for current backup of NWS supercomputer	Average 24 hour track guidance error for the 2000 season (NCEP/TPC)	Delta from NWS Operational Hurricane model track error	Additional annual cost (1)
Navy FNMOC (GFDL version)	85 miles	+16 miles	\$17,280,000
Navy NOGAPS	91 miles	+22 miles	\$23,760,000
			Average is \$20,520,000 in preparedness cost increases over operational model

1. Costs assume average of 1.8 landfall hurricanes per year and average preparedness at \$600K/mile (NCEP/TPC). Per Chris Adams, CSU, 1999 a single worst case for a misplaced Galveston/Houston hurricane is \$200 - \$300 million..

Basis for investment: Contribution to the Nation

Ensures continuity of mission critical operations and objectives

- Eliminates extended outages (few hours vs many hours, days, weeks, or months) for forecast model production and satellite data processing.
- Provides significant cost avoidance for degraded services (e.g. hurricane tracks)
- Compliance with PDD's
- R&D functions are not supported

Customers receive uninterrupted service

- Same product suite
- Same delivery times
 - Sustains service to the \$200M+/year commercial weather industry

Basis for investment: Contribution to the Nation

- Provides important computational resources to:
 - Leverage large investments in government and academic research and development in numerical weather/climate prediction.
 - National Test Bed for meteorological model development
 - Joint Center for Satellite Data Assimilation
 - Accelerate transition of operational research and new satellite data into operations
 - Faster ROI for new satellite systems and instruments
 - Protects base investments in the NWS and OSDPD operational systems and models

NOAA CIP

Utilized to improve "ROI" in satellites

- Faster operational forecast improvements accelerate the ROI to the taxpayer
- Joint Center for Satellite Data Assimilation
 - Observations will increase by a factor of 10,000
 - U.S. Government will invest \$Billions
 in improved weather & climate
 observing systems and forecast services
 - NOAA is currently unable to use the expanded resources from this investment
- National Test Bed
 - \$100's millions of government investment in research
 - Inadequate technology transfer to operations

Leveraging Partners/Resources

- The NOAA CIPS supports separate solutions to the NESDIS and NWS backup requirements
 - Costs could be avoided if these solutions were colocated

 If an existing Government facility(ies) can be found to host the backup systems costs can be reduced

Costs

NOAA CIP INITIATIVE FOR FY2003						
						COST THRU
	FY2003	FY2004	FY2005	FY2006	FY2007	FY2007
Acquistion/Hardware/Facility						
CCS Backup: Compute/systems	6.00	6.00	6.00	6.00	6.00	30.00
OSDPD Backup: Computers/systems	2.21	2.80	2.80	2.80	2.80	13.41
Faclity Upgrades	2.00					2.00
Subtotal:	10.21	8.80	8.80	8.80	8.80	45.41
Recurring O&M/Support						
Maintenance/Support/Facility lease	0.00	2.00	2.00	2.00	2.00	8.00
Total:	10.21	10.80	10.80	10.80	10.80	53.41

Program & Risk Management

Acquisition strategy

- Contracted separately using NWS and OSDPD contracts
- Risk Management
 - NWS system included as an option in the planned acquisition for next operational supercomputer for CCS
 - OSDPD backup incorporated into operational system acquisition contract
- Additional CCS funds provides price/performance incentive to vendors
 - Allows backup to keep "in sync" with operational system
 - Capacity, hardware, system software, comms, etc
- Leverage and utilize contract monitoring and benchmark performance of operational system

Program & Risk Management

- IT security
 - Managed with same security infrastructure and procedures as operational systems
- COTS hardware/operating system software wherever possible
- Risk: locating an existing facility(ies)
 - Facility not identified
 - Option for vendor to provide facility

Program & Risk Management

Implementation schedule

- FY 02 FY 03Q1 : finalize operating contingency plans, site survey
- FY 03 Q2/Q3: facility agreement, system acquisition, begin initial installation, install telecommunications
- FY 03 Q4/FY04 Q1: complete installation, testing
- FY 04 Q1/Q2: perform critical backup supporting OSDPD move

Alternatives

Commercial Service (outsource)

- No commercial service has a computational system with sufficient capabilities to meet CIPS backup requirements.
- Very high (nearly prohibitive) risk to a commercial service willing to accept the liability for providing OSDPD or CCS products during outages.
- NWS computational requirement very large
 - Need to sustain on-time product delivery
 - Precludes using existing "spare" capacity in supercomputing community

Status Quo

- NWS: does not meet objective of 100% backup
- OSDPD: does not provide any backup

Alternatives

• Why a Separate Facility from Current Operations?

- Backups require sufficient geographical separation from operational system
- Same event should not impact both operational and backup systems
 - Power interruptions
 - Weather event (e.g hurricane, flood, tornado,etc)
 - Earthquake
 - Man-made disaster (e.g. biological, nuclear, conventional, fire)

Alternatives

Can the costs be reduced further?

- Backup for OSDPD can be achieved for \$2.8M recurring
- Cost reductions for the CCS backup reduces system size and capability.
 - Funding for CCS backup at \$4M/year (two-thirds of hardware request)
 - Provides system baseline infrastructure (storage, connection, and I/O)
 - Provides very minimal processing capability
 - Resources provided would allow only ~40% 50% backup of CCS models, with prime mesoscale model run at lower resolution

NOAA CIP

IT Architecture Compliance

- Adhere to IT Principles
- Adhere to Policies and Standards
- Adheres to Security Policy as Outlined in Principles
- Align with Mission Processes
- Align with the Information Model
- Have a plan for Interfaces with Current or Planned Applications
- Are Compatible with the Infrastructure in the Target Architecture

- Yes Fully
- Yes Fully (IBM extensions waivered for performance)
- Yes Fully

Secretarial and Department Goals

- This is a pure CIP initiative for mission critical systems
 - Provides a collateral benefit of addressing an unmet resource requirement to support R&D
- Sustains vital support to Government agencies and the commercial weather industry if a disaster occurs
- Speeds the ROI of \$Billions invested/to be invested in satellites

